

TUBE Bending Formulas

B = degree of bend E = feathered edge thickness $F_b = bend difficulty factor$ $F_d = "D" of bend$ $F_w = wall factor$ $K_r = constant for rigidity$ $K_s = constant for minimum$ clamp length $K_z = constant for feathered$ edge

- $L_c = clamp \ length$ $L_p = pressure \ die \ length$ $M_b = mandrel \ ball \ diameter$ $M_d = mandrel \ nose \ diameter$ $M_m = mandrel \ body$ diameter $M_r = mandrel \ nose \ radius$ $P_e = percentage \ of$ $elongation \ at \ arc$ $P_t = percentage \ of \ wall$ thinning $P_w = wall \ thickness \ after$ thinning
- $R = centerline \ radius$ $R_i = inside \ radius$ $R_o = outside \ radius$ $S = maximum \ set-up \ depth$ $T = tube \ outside \ diameter$ $T_i = tube \ inside \ diameter$ $W = wall \ thickness$ $W_i = thickness \ of \ inside$ lamination $W_o = thickness \ of \ outside$ lamination

Tube inside diameter:

 $T_i = T - (W \times 2)$

Inside radius:

 $R_i = R - (T / 2)$

Outside radius:

 $R_0 = R + (T / 2)$

Wall factor:

 $F_w = T / W$

"D" of bend:

 $F_d = R / T$

Bend difficulty rating (the higher the value, the more difficult the bend is to make; rule of thumb only):

Where $"K_r" = a$ constant for material rigidity (assign the same value to "K_r" as you would to calculate pressure die length; a value of 2 is suitable for most applications; click here for more information) and "n₁" through "n₄" are values to adjust the weight of each factor in the equation (see below for our recommended weighting):

General formula: $F_b = [(n_1 \times K_r) + (n_2 \times F_w) + ((n_3 \times B) / 180))] / [n_4 \times F_d]$

Formula with recommended weighting: $F_b = [2K_r + .2F_w + (B / 180)] / [F_d]$

Note: A bend difficulty rating (calculated with our recommended weighting) of 7 or less indicates a bend that is relatively simple to produce with the rotary-draw method. Factors in excess of 7 typically require either additional precision in set-up or close attention during production in order to hold the set-up parameters.

Wall-thinning of extrados at outside radius after bending (rule of thumb only):

Where " P_t " = percentage of wall-thinning and " P_w " = targeted thickness of wall after thinning out from bending:

 $P_t = (R_o - R) / R_o$ $P_w = W x (1 - P_t)$

Percentage of elongation at arc of the bend (rule of thumb only):

 $P_e = (R_o / R) - 1$

Mandrel nose diameter for single-wall tubing:

 $M_d = T - (W \times 2.21)$

Mandrel nose diameter for double-wall tubing:

Where $"W_0" =$ wall thickness of outside lamination and $"W_i" =$ wall thickness of inside lamination:

 $M_d = (T - (W_o \times 2)) - (W_i \times 2.21)$

Mandrel nose radius:

if $F_w < 50$ then $M_r = M_d \times .1$ else $M_r = M_d \times .02$

Mandrel body diameter:

 $M_m = M_d \times .995$

Mandrel ball diameter:

 $M_b = M_d \times .998$

Maximum set-up depth of mandrel nose relative to the line of tangency, as measured from nose end (including nose radius):

 $S = [(R + (T / 2) - W)^{2} - (R + (M_{d} / 2))^{2}]^{1/2} + M_{r}$

Wiper feathered edge thickness (simple-sweep geometry only):

Where " K_z " = a constant approaching zero depending upon limitations of material and method of manufacturing (with current technology, a value of .0025 is reasonable for " K_z "):

if T x $K_z > .006*$ then E = T x K_z else E = .006*

* Inches. For metric applications, substitute .15 millimeters.

Clamp length:

Where K_r " = a constant for material rigidity (assign a value of 2 to K_r " for most applications; click here for more information) and K_s " = a constant limiting the minimum clamp length depending upon the surface of the cavity (assign to K_s " the value of 2 for smooth cavities and 1 for serrated cavities; click here for more information):

if (T x (K_r x 2.5)) - R < T x K_s then $L_c = T x K_s$ else $L_c = (T x (K_r x 2.5)) - R$

Pressure die length:

Where " K_r " = a constant for material rigidity (assign a value of 2 to " K_r " for most applications; click here for more information):

$L_p = (R \times 3.14 \times (B / 180)) + (T \times K_r)$

Contact Tube Form Solutions for more information or to answer any tube fabrication questions.

www.tubeformsolutions.com